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Nonrelativistic, classical statistical mechanics is used to describe a dense fluid of 
molecules composed of nuclei and electrons with purely Coulomb interaction potentials. 
A general equation of change is derived for the time rate of change of any macroscopic 
(ensemble averaged) dynamical variable. From this general equation, Maxwell's 
equations in a medium are derived and expressed in terms of molecular properties, 
e.g., polarization and magnetization densities. 
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1. I N T R O D U C T I O N  

A fluid system near  equi l ibr ium may be described either microscopically or macro- 
scopically. Microscopically, the system is regarded as being composed of discrete 

particles, the state of each particle being described by its posit ion and  m o m e n t u m  
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coordinates. The time evolution of the state of the system is described by Newton's 
equations. From a macroscopic viewpoint, the system is considered as a continuous 
fluid, the state of each infinitesimal region of the fluid being described by its mass, 
momentum, and energy densities. The time evolution of these densities is described 
by the hydrodynamic equations. Of course, a macroscopic description is the only 
practical one for a system of more than a few hundred particles. Using such a descrip- 
tion, the fundamental problem of treating a fluid near equilibrium is that of obtaining 
the hydrodynamic equations of change and the phenomenological coefficients for 
the fluid. 

For  a dilute gas, where the interparticle forces are negligible, the hydrodynamic 
equations are well known, m Irving and Kirkwood I~) have studied the more general 
problem and have derived the equations of change for a dense fluid, where the inter- 
particle forces must be taken into account. However, their work is restricted to systems 
for which the interparticle potential approaches zero faster than the inverse cube 
of the interparticle distance. Hence, the results are not applicable to Coulomb systems, 
for which the interparticle potential is proportional to the inverse first power of the 
interparticle distance. The equations of change for such a system are basic to the 
study of magnetohydrodynamics, plasma physics, and any problem concerned with 
the behavior of ionized gases. Thus it is desirable to supplement the preceding develop- 
ment by deriving the equations of change for a dense Coulomb gas. 

The Irving and Kirkwood derivation of the equations of change is statistical, 
i.e., the macroscopic description of the system is obtained by statistically averaging 
over an ensemble of systems. Many of the derivations of the equations of change 
for a Coulomb system, however, are nonstatistical. ~3,4) Although there is good agree- 
ment among these derivations when they are restricted to systems which can be 
described by a point particle model, conflicting results are obtained when attempts 
are made to introduce more realistic properties such as dipole and quadrupole 
moments into the model. Hence a statistical derivation of the equations of  change 
for the Coulomb system is desirable. 

In recent years several authors have in a limited way undertaken statistical 
derivations. Mazur ~51 has derived an equation of momentum change by such an 
approach. He neglected magnetic effects, however, and treated only a system of 
neutral molecules. Brittin ~6~ included magnetic effects in his derivation of the mass and 
momentum equations for a Coulomb system but neglected molecular effects. 
Kaufman ~7~ derived an equation of change for the energy as well as for the mass and 
momentum, but he also neglected molecular effects. 

It is the purpose of this work to derive the equations of change for a system of 
molecules, using nonrelativistie, classical statistical mechanics. Restricting this study 
to nonrelativistic phenomena does not place an excessive limitation on its application 
since relativistic effects are important only in systems at extremely high temperatures. 
For  a system of molecules, of course, a classical treatment is not adequate. However, 
a quantum-mechanical treatment would probably not alter the equations of change 
but only affect the detailed expressions for the densities. Since these expressions are 
not evaluated in this work, the quantum-mechanical development is reserved for 
discussion at a later date. 
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In this first paper, we develop a general equation for the rate of change of a 
macroscopic quantity and use this equation to derive Maxwell's equations for our 
system. In a later paper, we will derive the particular equations of change. 

2. T H E  G E N E R A L  E Q U A T I O N  OF C H A N G E  

The development of the general equation of change for molecules in this section 
closely parallels a similar development by Brittin (6) for a system of structureless 
particles. We include the development to introduce notation and certain basic relations 
which are useful in the remainder of this paper. 

We consider a system composed of N charged point particles, the nuclei and 
electrons in a real system. For convenience in the remainder of this work, we make 
use of a ,double subscript notation suggesting that the particles are clustered into 
groups representing molecules and ions. Each particle i of molecule k is described by 
a position vector rki, a velocity vector u~i, an electric charge e~ i ,  and a mass rnk~. 

The microscopic magnetic and electric fields of the system are expressed as 

and 

B" = ~ qa ~ • Az(r) -1- B(~)(r) (1) 
h 

r - - r ~ [ 3  1 ~paAa(r)-k E(~)(r) (2) 
E "  = �9 eki [ r - -  rki 

where c is the speed of light in a vacuum. In Eqs. (1) and (2), E(~)(r) and B(~)(r) are 
the contributions to the electric and magnetic fields due to be external sources. 
The Aa(r) are a set of orthogonal time-independent functions forming a basis set 
for the familiar oscillator expansion of the vector potential. (8) The Aa are constrained 
to obey the prescribed boundary conditions of the system and the set of equations 

~r " A~ = 0 (3) 

~2A~ ~oa 2 
er ~ + ~ A ~  = 0 (4) 

and 

f A~ A .  =- 4z rc2V3~ .  (5) dr o 

V 

where 3a. is the Kronecker delta, V is the volume of the system, and coa is a parameter 
depending on the boundary conditions. The qa are the coefficients of the Aa in this 
expansion and form a set of canonical coordinates describing the state of the transverse 
electromagnetic fields. Finally, the 

dq~ 
P a -  dt  (6) 

are the momenta conjugate to the q~. 
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In the usual way, an ensemble of systems is introduced and described by a 
distribution function, f(m(r~i,  u~i, qa, Pa, t), in a multidimensional space in which 
the coordinates are the complete set of r~i, uj~, qa, and Pa �9 This distribution function 
obeys the equation 

caf m) 
ca---t-- + Af(N) = 0 (7) 

analogous to the Liouville equation. The operator A is given by 

where 

8r~-~-. q- - -  E~,(r~i) + -uki • B"(r~) . - -  
k i  " ~ k i  C caUki 

ca (8) 

E~i(rki) ~ ~zj eki I r~i -- rtj 13 paAa(r~i) + E(~(rki) (9) 

is the electric field at r ~ ,  excluding the effects of particle ki. 
The macroscopic value or ensemble average of any 

g(rki, uki, qa, Pa), is given by 

( g )  = f gf(N) 1-I drki duki dqa dpa 
Igi 

dynamical variable, 

(10) 

where f(u) is assumed to be normalized so that 

(1>  --~ 1 (11) 

The time rate of change of (g) is the general equation of change and is given by 

O(g} _ (Ag)  (12) 
cat 

where g is assumed to have no explicit time dependence. 
Equation (12) is used in Section 3 to derive the set of Maxwell's equations for the 

macroscopic electric and magnetic field densities, and in later papers will be used to 
derive the equations of change for the mass density, momentum density, and energy 
density. 

3. T H E  M A X W E L L  E G I U A T I O N S  IN  A M A T E R I A L  M E D I U M  

In the previous section, we defined the microscopic electric and magnetic fields 
E" and B" [see Eqs. (1) and (2)]. These fields fluctuate rapidly with time; the measurable 
quantities, however, are the macroscopic fields, E and B, obtained by averaging E" 
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and B" over a statistical ensemble. The fields E" and B, obey the microscopic Maxwell 
equations 

a 
- -  �9 B" = 0 ( 1 3 )  
ar 

~B" 
at -- c ~ -  r x E" (14) 

- - "  E"  = 47r ~ eki a(rki -- r) (15) 
ar ~i 

and 

~E"  a 
at - -  - -47r  y ,  ekiuki 3(r7~ i -- r) @ c ~ • B" (16) 

k i  

where 3(0 is the Dirac delta function. Similarly, the fields E and B obey a set of 
macroscopic Maxwell equations which may be derived by evaluating the quantities 

a a aE aB 
~r " E, ar -B, at ' and at 

3.1. The First Maxwel l  Equation 

The derivation of the first Maxwell equation for the macroscopic fields is trivial. 
Starting with the definition of B, 

B ~ <B"> ( 1 7 )  

we take the divergence of both sides to obtain 

a B ( ~ - r  B"> (18) ar 

or, since the divergence of B" is zero, 

a 
a-~-" B = 0 (19) 

This is the usual equation for the magnetic field in a material medium. 

3.2. The Second Maxwel l  Equation 

We next consider aB/a t .  From the definition of B", Eq. (1), and the general 
equation of change, Eq. (12), we have 

aBat -- A q ~  • Aa + ~----~ (20) 
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Applying the microscopic Maxwell equations to the second term on the right of 
Eq. (20) and carrying out the A operation in the first term, we obtain 

aB ~ a ( p  ~ > a E(~, (21) at -- a-b}-r • Aa -- c - ~ -  r • 

Since the macroscopic electric field is defined as E ~ <E">, the definition of E", 
Eq. (2), may be used to write Eq. (21) in the form 

OB O 
at -- C ~ r  • E (22) 

Once again this is well known as a Maxwell equation in a material medium. 

3.3. The Third Maxwell Equation 

From Eq. (2), we write 

a . E -- - �9 (23) 
& ar z . [rki -- r I -? ~Tr 

The second term on the right is zero because there are no sources of the external 
field in the system. By carrying out the differentiation in the first term on the right, 
we obtain 

a 
a--7 " E = 4rr ~ <eki 8(r~ -- r)> (24) 

k i  

where Z ~  (ekfi(rki -- r)> can be interpreted as the macroscopic charge density at 
the point r. 

In the above paragraph, we have expressed (a/ar) �9 E in terms of an e!ectron- 
nuclei-centered density 8 ( rk~-  r). We would like, however, to write (a/ar). E in 
terms of a molecule-centered density 8(r~ --  r), where rk is the vector to the center 
of  mass of molecule k, 

rk = ~, m~irki (25) 
"7 �9 1 7 4  k 

and m~ is the mass of molecule k, 

mk = ~ mini (26) 
i 

To do this we expand each k-subscripted term on the right of Eq. (24) in a Taylor 
series about rk : 

~=o 1 ~ < (")'(")/' a 1('~' 8(r,c-- r)> (27) Z <eki 8(rki -- r)> = 7 %iRei \-~r~/ 
k i  = " " 

The superscript n has the obvious meaning, e.g., 

R(~).(a)/, a ](aj . a a a (28) gi \ ~ - k /  = Rk~RgiRki ark ark ark 
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where 

Rhi = l'hi - -  r h (29) 

is the vector  f rom the center o f  mass  of  molecule k to particle i o f  molecule k. Now,  
using the symmetry  of  the delta function, 

O O 
0rh 3(rh - -  r ) =  Or ~(rh - -  r) (30) 

we write Eq. (27) as 

( - -1 ) "  
(e  k~ 8(r hi - -  r ) )  = n ! 

hi n : O  

\ ~ - !  �9 ( ~ ) ~  " R (') ~(r h - -  r)) (31) 
h i  

We now define a tensor of  r ank  n 

1 
- -  (,ehi hi Q('~) ~ -n! ~ " R ('~) ~(r~ - -  r))  (32) 

P(") is the electric mult ipole m o m e n t  of  rank  n of  molecule k. This where Z~ eki *-h~ 

quant i ty  Q(") may  be interpreted as the macroscopic  molecular  electric mult ipole 
density of  rank  n. Fo r  example,  Q(0) is the m o n o p o l e  or  charge density, Q(1) the 
dipole density, etc. 

Utilizing Eqs. (31) and (32), we may  write (24) as 

0 " E = 47rQ (~ + 4rr ~ ( - 1 )  ~+1 \ ~ - r ]  . (,2+1)Qr (33) 
Or 

n = 0  

I t  is convenient  to define the molecular  charge density by 

where 

p~ ~_ Q(O) = ~ <eh 8(rh - r)> (34) 
h 

eh ~ ~,  ehi (35) 
i 

is the charge of  molecule k. I t  is also convenient  to define the electric polarizat ion,  P, by 

P ~ ~ ( - -1)n(-~-r)(~'  �9 (~'Q (~+1' (36) 
n = 0  

and the electric displacement,  D, as 

D ~ E + 4rrP (37) 

In  terms of  these quantities, Eq. (33) becomes 

0 
0 ~ "  D = 4rrp, (38) 
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In form, this is a usual macroscopic Maxwell equation but the definition of P 
in this work is a generalization of that usually given since moments of higher order 
than the dipole are included. From Eq. (38), it is clear that D is that field whose 
sources are the molecules of the system, in their ensemble-averaged positions, regarded 
as ideal monopoles or point particles. In contrast to D, it is seen from Eq. (24) that 
the field E has as its source the "true" particles of the system, the nuclei and electrons 
regarded as point particles. From these arguments it can be seen intuitively that D 
is that quantity which E approaches as the average intermolecular distance increases. 
In dilute systems, therefore, D is a close approximation to E, and P in Eq. (37) is 
negligible. As the density of the system increases, P has a greater effect, and more 
terms must be retained in its series representation, Eq. (36), to obtain accurate results. 

3.4. The Fourth Maxwell Equation 

To obtain the final Maxwell equation, we evaluate 

~t -- ~ ek~uk~ " [ ~ i  ~r I r ~ - - r  I + ~ -  y'a Aa(rk~)A~(r) 

OE(~) (39) 

The first term in Eq. (39) is simplified by use of the identity 

[ 0  ~ 1 1 ] 
E ekiuk~" ~-k~ ~r I rki -- r ] + ~ ~ AA(rki) A~(r) 

=- 4rr ~. e~iuki ~(rki -- r) (40) 
/ci 

derived from the microscopic Maxwell equations. If Eq. (40) is substituted into the 
first term of Eq. (39), and the defining equation for Aa, Eq. (4), is substituted into 
the second term, the result is 

~E 
~t -- --47r ~ (ekiuki ~(r~ -- r)) + c ~- r  • B (41) 

k i  

The term ~]ki (ek~u~fl(rk~ -- r)) is the total macroscopic current density analogous 
to the total macroscopic charge density, ~7~i (ekf i ( rk~-  r)). Equation (41) is the 
particle-centered equation analogous to Eq. (24). 

Again, as we did for the divergence in Section 3.3, we transform this equation 
to a molecule-centered expression. Expanding Zki (ekiuki~(rki- r)) in a Taylor 
series similar to Eq. (31), we obtain 

Z (e~uki ~(rki -- r)} = ~ (--1)" ( 0 ](~' " (" )Z (ekiRk~'"'Uk~ ~(rk -- r)) (42) 
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When this expression is substituted into Eq. (41) and the result into the definition 
of D, it is seen that 

aD a aP 
et -- --4~r ~ (ekiuki 8(rkl -- r))  + c ~ • B + 4rr a~- (43) 

/ci 

In Section 3.5, we evaluate the time derivative of the polarization P [see Eq. (64)]. 
The result may be written as 

aP ~ ~ (--1) ~ ( a )  (~) 
at - -  ~-o: .~=0 (n -j- 1)! ~ - r  . (n)  2ki \/ekiR(m)U~ kiR(~-m)ki 3(rk - -  r))  

The quantity 

\ e  ikukr .k i  (n + 1)] \ ~ - /  . (,~+l) ~ - - 0(,~+1) ~(rk r)) (44) 
ki 

drk  mk~uki  
uT~-- dt --  ~ -  (45) 

i m k  

is the velocity of the center of mass of molecule k, and 

dRki 
UI~i ~ dt = ukl --  uk (46) 

is the velocity of particle ki about the center of mass of molecule k. Substituting 
Eqs. (42) and (44) into Eq. (43) allows (43) to be written after some rearrangement as 

aD 
at 

( - 1 ) "  
- 4 ~ r ~  ( n + l ) !  

n=O 

a 
- 4~ 2 (e~uk ~(rk - r)) + c ~ -  r • B 

k 

For convenience we define a "magnetic multipole density" 

~ - ]  . (n+l) \/eki LrR(n+l)'ki --k - -  u k R ( n + l ) ] k i  j ~ ( r  k - -  l r ) )  

(47) 

n l_ Z " "(~' Uk, 3(r k (48) M(J~ ~ (n + 1)! c k~ ~'ek~'k~ • - -  r ) )  

and an "equivalent magnetic multipole density" 

M(~) ~_1 _1 V " R (~) 3(r k r)) (49) u n l  ~ z . ~ e k i  ki ) I1 k - -  

where M(~ ~ and M(~ ) are tensors of rank n. To interpret these quantities, we regard 
the motion of the nuclei and electrons in a molecule as being separated into two 
parts--the motion about the center of mass of the molecule gives rise to the M~  ), 
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while the motion with the center of mass gives rise to the M (n) Under this interpreta- - ' ~ u  " 

tion, the monopole term M~ ) is regarded as the current density and is designated by 
the symbol 

J -~ M (~ = ~ <ekuk 8(rk --  r)> (50) u 

k 

We further define a magnetization 

(51.) 

and a magnetic intensity 

H ~ B -- 4~rM (52) 

With these definitions, Eq. (47) may be written as 

~D 
#-~- ---- --4r -t- c ~ X H (53) 

The last equation is a familiar macroscopic Maxwell equation, as are the equations 
derived in the previous sections. The quantity H is analogous to D in that it is the 
magnetic field produced by the molecules regarded as point charges. This can be seen 
from Eq. (53) since J is due to the motion of the molecular charges assumed con- 
centrated at the center of mass of the molecule. By reasoning analogous to that of 
Section 3.3, B is interpreted as being produced by the " t rue" point charges (the nuclei 
and electrons). Hence, H is a close approximation to B for dilute systems, but for 
more concentrated systems H should be corrected by adding to it the magnetization M, 

M ( n )  which depends on the motions of the intramolecular charges. These terms are -,-v 
and M~ ~). 

To clarify the interpretation of M, we introduce the concept of a mass-weighted 
macroscopic molecular velocity, the familiar "stream velocity" 

v ------ Z~ (mku~ 3(rk -- r)) (54) 
~2~ (rn~ 3(r~ -- r)) 

and a fluctuation velocity 

v~ =-- u~ -- v (55) 

If we write M including only the terms to the second order in Rk~ and Uk~, we obtain, 
by using the above definitions, 

M = M(1) + 1 [ 
- ' -v c Qm • 

"i 
�9 (Qt~) x v)/ v - -~-- r / 

�9 (RkiRk, • %)] 3 ( r ~ -  r)} 
C k i  

(56) 
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where 

M~ ) 1 - -  ~ -  ~ (ek~Rl~i • Uki 8(r7~ -- r)> (57) 

If  we assume that the fluctuation velocity is small compared to the stream velocity, 
and neglect the quadruple term, we may write Eq. (56) as 

M = M (1) @- 1 Q(1) (58) ~'~u c X v 

a familiar result for "constant-velocity" systems.(9) If  we assume further that the system 
is stationary, Eq. (58) becomes 

M = M~' (59) 

which is another familiar expression/t~ 

3.5. The General Conservation Equation 

We next derive an expression for 8Q(~) / s t .  For n = 0, the result is the familiar 
equation of charge conservation. The general result is used frequently in conjunction 
with Maxwell's equations. Use was made Of this general result in deriving the fourth 
Maxwell equation in the previous section [see Eq. (44)]. 

From the general equation of change and the definition of Q(~) it follows that 

8 Z k i  cek i t%i  -- r)> + ~ u R (~) 8(r~ 
�9 (ek i  ,~ ki - -  r)> 

aK~ 
8(r~ -- r) x) - -  _ ~ ( e k i  "-(~) 

/ 
(60) 

With n = 0, the above equation reduces to the familiar equation of charge conserva- 
tion, 

8p~ 8 
a t  + --~-r " J = 0 (61) 

where p~ is the molecular charge density and J is the molecular current density. 
Furthermore, the form of Eq. (60) suggests the definition of the new quantities. 

~=0 (n + 1)! ~ . ~n) ~k~ \~i~7~176 R(n+l)ki 8(rk -- r)> (62) 

and 

e AD(n+I) > 
n=0 ki 
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I f  Eqs. (60), (62), 
equation is 

and (63) are combined with the definition of P, the resulting 

0P a 
~ q- ~ -J~ = P (64) 

This has the form of a "conservation" equation for the polarization P. In this equation, 
J~ may be interpreted as a polarization current and ~ as a "source" of polarization. 

4. C O N C L U S I O N  

In this paper we have derived a set of  Maxwell equations for a system composed 
of molecules and ions. These equations, (19), (22), (38), and (53), have the same form 
as the Maxwell equations usually derived for the electric and magnetic fields in a 
material medium. The significance of this work lies, however, in a redefinition of 
some of the quantities appearing in the Maxwell equations. Instead of the usual 
ambiguous definitions, we define the electric displacement D and the magnetic 
intensity H [see Eqs. (37) and (52)] rigorously in terms of the molecular species within 
the medium. 
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